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Rational and Objectives: Computer-aided detection (CAD) systems are intended to improve performance. This study investigates how
CAD might actually interfere with a visual search task. This is a laboratory study with implications for clinical use of CAD.

Methods: Forty-seven naive observers in two studies were asked to search for a target, embedded in 1/f2.4 noise while wemonitored their
eye movements. For some observers, a CAD systemmarked 75% of targets and 10% of distractors, whereas other observers completed
the study without CAD. In experiment 1, the CAD system’s primary function was to tell observers where the target might be. In experiment
2, CAD provided information about target identity.

Results: In experiment 1, there was a significant enhancement of observer sensitivity in the presence of CAD (t(22) = 4.74, P < .001), but
there was also a substantial cost. Targets that were not marked by the CAD systemweremissedmore frequently than equivalent targets in
no-CAD blocks of the experiment (t(22) = 7.02, P < .001). Experiment 2 showed no behavioral benefit fromCAD, but also no significant cost
on sensitivity to unmarked targets (t(22) = 0.6, P = NS). Finally, in both experiments, CAD produced reliable changes in eye movements:
CAD observers examined a lower total percentage of the search area than the no-CAD observers (experiment 1: t(48) = 3.05, P < .005;
experiment 2: t(50) = 7.31, P < .001).

Conclusions: CAD signals do not combine with observers’ unaided performance in a straightforwardmanner. CAD can engender a sense
of certainty that can lead to incomplete search and elevated chances of missing unmarked stimuli.
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C omputer-aided detection (CAD) algorithms are
designed to assist radiologists during medical image
interpretation. For instance, in mammography, a

typical CAD system marks potential abnormalities on the
image to encourage additional evaluation by the radiologist
before the radiologist makes a final recommendation. In the
United States, CAD is currently used on nearly 75% of all
mammograms (1). Several large studies have assessed the effi-
cacy of CAD (2,3). Although most studies show that hit rate
increases when CAD is introduced to a practice, false alarm
rate also tends to increase, making it unclear whether the
benefits of CAD outweigh the costs (4,5). From a signal
detection perspective, the relatively small benefit of CAD is

surprising because the CAD system should be increasing the
total amount of information available to the radiologists,
yielding increased performance. The size of the hypothetical
benefit would be larger if CAD and radiologists were
making use of independent signals and smaller if they are
using the same noisy signals. Even if CAD and radiologists
are not independent, the hypothetical benefit seems to be
larger than what is observed (3). That the use of CAD produ-
ces only modest improvement in signal detection measures
such as area under the receiver operating characteristic
(ROC) curve suggests that radiologists are unable to optimally
combine the information conveyed by the CAD system and
information they gather from the image itself.

In the current study, we use eye-tracking to study the
costs and benefits of the presence of a simultaneous CAD
system. The laboratory task we created was designed to
emulate critical aspects of a typical radiologic search for a
difficult to find target. In both experiments, half of the
observers completed the experiment without a CAD system,
whereas the other half searched the same trials with the help
of our artificial CAD system that marked 75% of all targets
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and 10% of nontargets. In experiment 1, targets were diffi-
cult to find because they were embedded in a field of noise.
Here, the CAD system primarily aided target detection
(CADe). In experiment 2, we manipulated the appearance
of our target ‘‘Ts’’ and distractor ‘‘Ls,’’ making the Ts and
Ls more similar to each other. At the same time, we
decreased the opacity of the background noise the items so
that the items were easier to find. Our intent was to keep
the overall difficulty roughly the same across the two experi-
ments. In this case, the CAD system primarily aided target
diagnosis (CADx).

MATERIALS AND METHODS

Observers were instructed to search for a target letter, T,
among distractor, Ls. All of the stimuli were embedded in
a 16.5! square texture of cloudlike 1/f2.4 noise (Fig 1). This
noise roughly simulates the spatial frequency of radiologic
images. Mammograms, for example, can be roughly charac-
terized as 1/f3 stimuli (6). The similarity to real medical
images is not critical in this case. The noise was merely
designed to make the search task more demanding. The stim-
uli consisted of Ts and Ls of a random orientation that were
made up of two perpendicular lines slightly offset from each
other. These stimuli allowed us to manipulate the difficulty
of differentiating targets and distractors by changing the offset
of bars comprising these items. Ts and Ls subtended 1.35! vis-
ual angle. CAD marks were pink circles with a diameter of
1.5!. Target and distractor locations were chosen at random
from a 4 " 4 grid of possible locations. Position within this
grid was randomly jittered (up to 0.25!) to avoid predictable
locations (Fig 1).
Observers were instructed to click on the Twhen detected

and to click on an ‘‘absent’’ button if no target was found. Half
of the trials contained a single target. A confidence rating was
collected at the conclusion of each trial using a 6-point scale,
with 6 denoting highest confidence in target presence and 1,
lowest. On CAD blocks, observers were instructed to use the
CAD to help them find the target; however, they were told
that CAD would sometimes miss the target or mark a distrac-
tor. In this artificial situation, we could set the performance of
our simulated CAD to any level. In this case, our CAD
marked the target 75% of the time and marked 10% of the dis-
tractor Ls; equivalent to a d-prime value of 1.95. Each trial
contained an average of 5 Ls (range 0–15), meaning that the
CAD made an average of 0.5 false-positive marks per image.
CAD marks appeared simultaneously with stimulus onset.
This differs from the Food and Drug Administration–
approved protocol of showing CAD marking after an initial
CAD-free reading.
Both experiments employed a between-subjects design in

which half of the observers were assigned to a CAD condition
and the other half to a no-CAD condition. Observers in both
conditions began with a 50 trial practice block that did
not contain CAD markings. This was followed by a block of
100 experimental trials. All observers saw the same 150

‘‘cases’’ though the order of cases was different for each
observer. In the CAD condition, the 100 experimental trials
had CAD marks added. We then compared performance
across observers in the CAD/no-CAD block. This design
allowed us to equate the amount of experience the observers
had with our task when they undertook the critical CAD/
no-CAD block of trials.

Differences between Experiments 1 and 2

Experiments 1 and 2 differed in the opacity of the 1/f2.4 noise
and the similarity between targets and distractors. Higher
noise opacity makes the items harder to detect. Increased sim-
ilarity makes targets harder to discriminate from distractors.
The effects of these manipulations are not independent
because noise also makes the items harder to discriminate.
However, separately manipulating these two factors allows
us to produce two tasks with similar performance for different
reasons. Experiment 1 had high noise and low similarity
between targets and distractors, whereas experiment 2 had
lower noise and higher similarity between targets and distrac-
tors. Thus, the targets in experiment 1 were difficult to detect
but easy to ‘‘diagnose.’’ Here CAD would aid detection
(CADe). The targets in experiment 2 were easy to detect
and hard to identify. In this case, CAD would aid diagnosis
(CADx).

Observers

Twenty-three observers were tested in experiment 1 and 24 in
experiment 2.Observers ranged in age from18 to 54 (average=
24.3, standard deviation = 5.7, 11 male). All had at least 20/25
acuity (with correction as needed) and could pass the Ishihara
Color-Blindness test. All gave informed consent and were
paid $10/hour for their time.

Figure 1. Representative example of the search stimulus. Dotted
circles represent predefined interest areas that were not visible dur-
ing the experiment.

Academic Radiology, Vol 19, No 10, October 2012 COMPUTER-AIDED DETECTION INFLUENCES VISUAL SEARCH

1261



Apparatus

Eye movements were recorded with an EyeLink1000
tower system (SR Research, Kanata, Ontario, Canada) at a
sampling rate of 1000 Hz. Each block within the experiment
was preceded by a randomized, 9-point calibration and valida-
tion procedure. Experimental sessions were carried out on a
Macintosh G4 computer running Mac OS 10.5 and written
inMatlab 7.5 (TheMathworks) using the Psychophysics Tool-
box, version 3 (7,8). Stimuli were presented on 20-inch CRT
monitor (Mitsubishi Diamond Pro 91TXM) with resolution
set to 1280" 960 pixels, and an 85-Hz refresh rate. Observers
were 57.4 cm from themonitor. At this viewing distance, 1 cm
subtends 1! of visual angle (!). We measured eye movements
from the onset of the stimulus material until the observer
clicked on either the target or a ‘‘no target’’ button.

Eye-tracking Interest Areas

To quantify the amount of time spent on different types of
stimuli during while searching for targets, we predefined a
number of regions of interest (ROIs) on each trial and meas-
ured the amount of time spent by the eyes in each region.
Each ROI was a circle that subtended 1.5!. ROIs included
each distractor on the trial, two regions of empty space and,
when present, the target. As noted, items and thus their
ROIs were located on an invisible jittered 4 " 4 grid.
Empty-space ROIs were randomly chosen from among the
possible item locations that did not contain an item.

RESULTS

In experiment 1, we compared performance for the CAD and
no-CAD groups. Recall that observers clicked on the target or
on an ‘‘absent’’ box on each trial. Basedon those responses, there
was a modest but significant increase in sensitivity from 80% in
theno-CADto 87% in theCADblocks (t(22)=4.74,P< .001).
There was a small, statistically insignificant decrease in specific-
ity: noCAD91%;CAD88%; t(22)= 1.05,P> .2.D-primewas
2.20 in the no-CADcondition and 2.26 in theCAD condition.
The difference was not significant (t(22) = .97, P > .3). The
6-point rating scale data were used to compute an area under
the ROC curve. Again, there was no significant benefit from
the CAD (area under the curve: CAD = .71, no CAD = .67,
t(22) = 0.4, P > .6).

Insight into the lack of benefit appears in Figure 2. Here
sensitivity is shown separately for marked and unmarked tar-
gets in the CAD condition as well as for the no-CAD condi-
tion. As would be expected, sensitivity was considerably
higher for targets that were marked by CAD (no-CAD con-
dition 81%, CAD marked 97%: t(22) = 15.75, P < .001).
However, sensitivity for unmarked targets in the CAD block
was dramatically lower, just 56%; significantly lower than per-
formance in the no-CAD block (t(22) = 7.02, P < .001). The
difference in sensitivity between marked and unmarked
targets was also significant (t11) = 13.16, P < .001).

Experiment 2 (CADx version) decreased noise opacity and
increased similarity of target Ts and distractor Ls. The targets
were easier to find but harder to identify. CAD effects were
smaller in this CADx simulation than they were in the CADe
simulation. There was a marginally significant increase in sensi-
tivity from 79% (no CAD) to 84% (CAD) (t(22) = 2.00,
P = .06). Specificity did not change significantly (CAD: 83%,
no CAD 87%, t(22) = 1.11, P > .2) nor did d-prime (CAD:
1.65, no CAD 1.56: t(22) = 0.98, P > .3) or the area under
the ROC curve, calculated from the rating data (CAD: .68,
no CAD.66: t(23) = 0.17, P = .87).

Turning to marked and unmarked targets in the CAD
block, we see that, as in experiment 1, marked targets are
found more frequently (83%) than unmarked targets (77%:
t(11) = 2.23, P < .05). The sensitivity to marked targets is
higher than the sensitivity in the no-CAD block (CAD:
87%, No CAD: 82%, (t(22) = 3.64, P < .005). However,
unlike experiment 1, sensitivity to the unmarked targets in
the CAD block was not significantly lower than in the no-
CAD block (t(22) = 0.6, P > .5.; Fig 2).

Perhaps the increasedmiss rate for CADobservers is due to a
tendency to spend less overall time because of an overreliance
on the CAD system. This hypothesis was not supported by the
response time data in either experiment. In both experiments,
the overall mean response time did not differ between the
CAD and no-CAD groups (experiment 1: t(21) = 1.67, P =
.11; experiment 2: t(22) = 1,45, P = .16). The same result
held for trials that did not contain a target (experiment 1:
t(21) = 1.23, P = .21; experiment 2: t(22) = 1.46, P = .16).
CAD seems to have changed the way observers spent their
time; not the amount of time that they spent.

Eye Movements

We quantified eye movements by analyzing overall coverage
of the search area, cumulative dwell time on specific regions
of the search images (targets, distractors, or empty space)
and frequency with which these interest areas were simply
never fixated.

The most dramatic finding in the behavioral data is the
reduction in sensitivity for unmarked targets in the CAD con-
dition of experiment 1, the CADe simulation. Intuitively, it
would seem that observers put too much faith in an imperfect
CAD, assuming that the CAD marked all targets. An analysis
of eye movements can substantiate this intuition. The two pri-
mary results of our analysis of the eye movements are pre-
viewed in Figures 3a and 4a. We created heat maps that
represent the amount of time spent in each position of the
search area for two representative trials from experiment 1.
The trial is shown on the left with the eye movement heat
map overlaid on the right. The upper fields show an example
without CAD. The lower fields show the same display in a
condition where it received two CAD marks, neither one
marking the target, in this case. Each map is a composite of
the eye movements of 11 observers. The final no-CAD
observer was excluded so that the two groups were equal.
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The figure suggests that when a target is present but
unmarked, observers in the CAD condition spend less time
looking at it. Indeed, observers fail to fixate unmarked targets
at all more frequently in the CAD than in the no-CAD con-
ditions. To quantify this result, we analyzed the percentage of
unmarked targets that were never fixated by the observer for
experiments 1 and 2 (Fig 3b). There was a significant interac-
tion between experiment and CAD presence on the percent-
age of targets that were never fixated (F(1,43) = 8.72, P < .01)
as well as main effects for both CAD presence (F(1,43) = 7.49,
P < .01) and experiment (F(1,43) = 49.3, P < .001). There
was a significant effect of CAD presence in experiment
1 (F(1,21) = 9.01, P < .01), but no effect in experiment
2 (F(1,22) = .05, P = .83), suggesting that the interaction
was driven by the increased miss rate in the absence of CAD

in experiment 1. This result is consistent with the heat maps
in Figure 3, suggesting that the present of CAD increased
the rate of target misses when the target was unmarked.

As noted, we designed the two experiments so that our
CAD system would play a different role in the two experi-
ments. The CAD was set to the same performance level in
both experiments (75% of targets marked, 10% of distractors),
but the primary difficulty in the first experiment was to detect
the target in the high opacity 1/f2.4 noise, whereas experiment
2 primarily challenged the observer’s ability to differentiate
between similar targets and distractors. If we restrict our anal-
ysis to the no-CAD observers from both experiments, the rate
of targets that were never fixated was higher in experiment
1 than in experiment 2 (F(1,22) = 15.00, P < .001): clear evi-
dence for the increased detection difficulty in experiment 1.

Figure 2. Sensitivity for different trial
types in experiments 1 and 2. Stars denote
significant differences (P < .05) between
sensitivity for a given condition and the
no computer-aided detection (CAD) block.
Errors bars here and throughout the article
represent standard error of the mean.

Figure 3. (a) Heat maps for a target present trial where the computer-aided detection (CAD) system did not mark the target. Search array and
heatmaps for the no-CADobservers and CAD observers, respectively.Color indicates the amount of time spent on a particular region of space.
Note that the scale for these heat maps is the same. (b) Percentage of unmarked targets that was never fixated in experiments 1 and 2. Star
denotes a significant difference between the percentage of targets missed in the CAD and no-CAD block during experiment 1.
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In Figure 4a, we created heat maps for a trial without a tar-
get and found that, again, the presence of the CAD strongly
influenced how the area was searched. In this example, the
observers in the no-CAD condition appeared to do a more
comprehensive job of searching the entire search display,
whereas the CAD observers spent much of their time closely
examining the low salience item that was marked by the CAD
system. To assess the completeness of search, we aggregated
the list of all fixations across observers and computed the over-
all coverage of the search area for each trial as a function of the
experimental condition (CAD or no CAD). The estimate of
coverage is dependent on an assumption about the ‘‘useful
field of view’’ (UFOV), the region surrounding the point of
fixation within which the task can be accomplished. Without
additional follow-up experiments, it is difficult to determine
what the useful field of view should for this set of stimuli.
Here, we report this analysis with using two different
UFOV estimates: a circle with a 2.1! diameter adapted from
the visual psychophysical literature (9) and a larger 5! circle
adapted from the medical image perception literature (10).
In computing percentage of coverage for a given trial, we
marked all pixels that fell within the diameter around the cen-
ter of each fixation as ‘‘covered’’ and repeated this process for
each fixation on a given trial. Coverage percentage is com-
puted as the number of ‘‘covered’’ pixels/total pixels for the
entire search area. To assess the reliability of observed effects,
we analyzed coverage for each trial and compared across
observer groups (CAD or no CAD). We focused our analyses

on absent trials, because observers typically terminate search as
soon as they find a target, making coverage metrics for target
present trials more difficult to interpret. Using the smaller
UFOVestimate, we found that overall coverage of the search
area was significantly higher for the no-CAD observers in
both experiment 1 (40.5% to 42.4%; t(48) = 3.36, P < .01)
and experiment 2 (31.8% to 38.5%; t(50) = 8.33, P < .001).
Using the larger UFOV, the different was no longer significant
for experiment 1 (59.7% to 59.8%; t(48) = 0.05, P > .8), but
remained reliable for experiment 2 (53.6% to 56.9%; t(50) =
4.06, P < .001; Fig 4b). It is not surprising that the effect of
CAD on total coverage appears to decrease as the UFOVesti-
mate is increased: as the UFOVestimate increases, so does the
percentage of pixels that are ‘‘covered’’ by multiple fixations,
decreasing the influence of additional fixations that are rela-
tively close.

Dwell Time Analysis

Although overall coverage is a good metric for the total
amount of the space that the observers searched, we can go
a step further in understanding the effects that CAD has on
search behavior by measuring the amount of time spent fixat-
ing different ROIs on each trial. Recall that ‘‘empty space’’
interest areas served as control interest areas and, on each trial,
consisted of two empty areas having the same size and location
as target or distractors on other trials. We categorized each
ROI in terms of whether or not it was marked or unmarked

Figure 4. (a) Heat maps for a target absent trial. Search array and heat maps for the no computer-aided detection (CAD) observers and CAD
observers, respectively. Color indicates the amount of time spent on a particular region of space. Note that the scale for these heat maps is the
same. (b,c) Percent coverage for absent trials for experiments 1 (b) and 2 (c). Coverage was computed using a 2.1! (smaller) and 5! (larger)
circle. See text for additional details.
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by the CAD system. This allowed us to compare time spent
fixating different regions of interest (ie, dwell time) as a func-
tion of whether the observer was in the CAD or no-CAD
condition and whether the ROIs for CAD observers were
or were not marked by the CAD system. Items that were
not marked for the CAD observers thus allowed us to com-
pare these items to the dwell times for visually identical
regions viewed by the no-CAD observers. Under these cir-
cumstances, it seems likely that any differences found in the
dwell time for these unmarked areas are due to differences
in the observers’ experimental context.
In Figure 5, we display the average time spent in target, dis-

tractor, and empty space regions of interest for experiments
1 and 2. ROIs for the CAD observers are separated based on
whether or not they were marked by the CAD system. In
experiment 1, dwell time on unmarked targets for the CAD
observers was marginally lower than dwell time on always
unmarked targets for the no-CAD observers (t(21) = 1.88,
P > .05), consistent with the picture painted by the heat
maps and the rate of targets that were never fixated in
Figures 3a and 3b, respectively. Within the CAD block, we
found that observers tended to spend more time looking
at marked targets than targets that were not marked
((t(10) = 2.51, P < .05; Fig 5a). However, dwell time for
marked targets in the CAD block was not significantly higher
than dwell time for targets (that were all unmarked) in the no-
CADblock (t(21) = .3, P> .7). Dwell time on targets followed
a similar pattern in experiment 2. Dwell time on marked
targets was longer than unmarked targets in the CAD block
(t(11) = 2.28, P < .05), but the marked targets for the CAD
observers were not fixated longer than the targets in the no-
CAD block (t(22) = .72, P = .49).
To analyze dwell time on nontarget items, we restricted our

analyses to trials in which there was no target present. This is to
avoid those trials in which a target was found, leading to search
termination prior to complete investigation of the search area.
Under these circumstances, the presence of CAD led to a
significant decrease in dwell time on unmarked distractors
(t(21) = 2.18, P < .05) and empty space (t(21) = 2.60,
P < .05; Figs 5b, 5c). In both cases, as predicted by the heat
maps and the overall coverage shown in Figure 4, more time
was spent fixating nontarget items in the no-CAD observers,
indicating more extensive search of the area. We also found
that dwell time was much higher for marked distractors than
unmarked distractors for CAD observers (t(10) = 8.74,
P < .001), or distractors (that were all unmarked) for the no-
CAD observers (t(21) = 4.05, P < .001).
Similar to experiment 1, in experiment 2 we found

evidence of less extensive search in presence of CAD despite
our finding of no behavioral benefit of CAD. As in experi-
ment 1, observers spent significantly less time on empty
space in the presence of CAD (t(22) = 2.88, P < .01), How-
ever, unlike experiment 1, we found no effect of CAD pres-
ence on target dwell time (t(22) = .72, P > .4) or distractor
dwell time ((t(22) = 1.11, P > .2). As in experiment 1, we
found increased dwell time devoted to marked distractors

as compared to unmarked distractors for the CAD observers
(t(11) = 8.7, P < .001). We also found that dwell time was
higher for marked distractors than distractors for the
no-CAD observers (t(22) = 4.91, P < .001).

We also used our eye movement data to assess whether our
manipulation of noise opacity and target ambiguity was able
to modulate how the CAD markings were used in experi-
ments 1 and 2. Because of the nature of the CAD signal,
we hypothesized that the CAD marks would attract more
attention in experiment 1 than in experiment 2 despite the
fact that, in terms of d-prime, the two systems were equiva-
lent. One way to quantify this effect is to examine the time
when an item is first fixated on a given trial. In experiment
1, targets with a CAD marking were first fixated after
530 ms, and this increased to 1918 ms in the same observers
on those trials when the target was not marked (t(11) = 9.38,
P < .001). Although the same trend was present in experi-
ment 2, the effect did not approach significance (marked tar-
gets time to first fixation: 1409 ms; unmarked targets: 1572
ms; t(11) = .35 P > .9). It seems that the CAD marks in
experiment 1 served to guide attention to a given area
quickly, whereas, in experiment 2 the same marks were
used to support the difficult ‘‘diagnosis’’ of ‘‘T’’ vs ‘‘L.’’
Together with the large difference in the percentage of targets
that were never fixated across the two experiments (Fig 3b),
our data suggest that we were successful in creating two
CAD systems that behaved in a manner analogous to CADe
(experiment 1) and CADx (experiment 2).

DISCUSSION

This study used eye tracking to better understand the costs and
benefits associated with the presence of CAD marks in a sim-
ulation of a radiological search task. Despite finding no overall
benefit of the presence of our CAD system and no difference
in terms of the amount of time spent searching these images,
we found that naive observers consistently explored images
less completely in the presence of two different CAD systems.
Furthermore our data suggest that the uses of CAD may
depend greatly on the nature of the task that is being under-
taken. We found that when CAD’s primary function was to
aid target detection, it led to a large cost for those targets
that were not marked. In this situation, unmarked targets
were detected much less frequently than visually identical
unmarked target in a block of trials without CAD. This repli-
cates previous work that found that radiologists were less likely
to recommend further evaluation of lesions that were not
marked by CAD (11). However, no such effect was found
when the CAD system’s primary function was diagnosis.
These results have implications for both how CAD is cur-
rently used and how to design more effective CAD systems.

It is important to note that our experiments used a simulta-
neous rather than second-reader CAD system that is most
common usage of CAD (12,13). Our rationale for this
decision was to focus on the role that the presence or
absence of a CAD system has on how a given image is
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searched. Although this design admittedly moves us away
from the current recommended usage of CAD, our goal was
design a task that concentrated on the influence of CAD
markings on visual search strategies and performance.
Future research will need to determine whether this result
generalizes to sequential CAD systems where the reader
assesses the image, then turns the CAD system on.
According to the rationale of second-reader design, the first
read should resemble the pattern of search observed for
unaided search. However, this is empirical prediction that
has not yet been tested. It would very interesting to see
whether the first read in a second-reader design resembles
proper unaided search or a truncated version of search in
anticipation of the second read. Another limitation of the cur-
rent study is that our observers were naive and further work
will be necessary to determine whether the tendency to search
less completely holds true for radiologists searching medical
images. Furthermore, this study was conducted using a sample
of images that include a much higher prevalence of targets that
is typically found in the clinic (14). However, Gur and col-
leagues have suggested that target prevalence does not influ-
ence area under the ROC curve in observer studies (15).
Still, we might expect that the tendency to fail to fully search
each image in the presence of CAD may be exacerbated the
very low prevalence found for many tasks in the radiology
clinic. Further work is necessary to determine whether this
intuition holds true.

Although it is imperative to continue to improve per-
formance by CAD systems, we believe that understanding
how observers are influenced by the presence or absence
of CAD is equally important. Although in theory giving
an observer a CAD signal should only increase d-prime, in
practice (and as we have seen in the current study), this is
not always the case (3). Several explanations have been pro-
posed for this situation including ignoring of CAD prompts,
trusting CAD marks too much thereby decreasing specific-
ity, or a false sense of security in the absence of CAD marks
(16). For instance, previous research has shown that there
was a large decrease in sensitivity for cancers that were not

marked by a CAD system (3,17). Our results confirm and
extending this finding, suggesting that CAD steers
observers away from searching exhaustively through empty
space. This could lead to an increased miss rate for
unmarked targets when the target is missed by the CAD
system, but in our experiments this effect was only clearly
observed when the CAD system’s primary role was
detection rather than diagnosis.

Given that our observers spent roughly the same amount
of time searching in the presence or absence of CAD and
that more time was spent evaluating items that were
marked by the CAD system, one simple way to explain
our results is through a fixed resource allocation model.
If an observer is willing to search a given image for a spe-
cific period before moving on the next trial irrespective of
the presence or absence of a CAD system, then to the
extent that marked items lead to longer dwell times on
those items, marked items will lead to less time that can
be spent exploring the image and examining unmarked
items. As observed in experiment 1, the extra time afforded
to marked items is useful when the target is marked and
detrimental when the target is not marked. Unmarked tar-
gets led to a large decrease in hit rate in experiment 1.
More generally, the presence of CAD appears to lead to
the less complete search observed in both experiments.

In the current study, we focused most of our analyses on
absent trials because we did include any trials with more
than one target. As a result, observers should have terminated
search as soon a single target was found, therefore making cov-
erage metrics from present trials difficult to interpret. Includ-
ing trials with multiple targets would fundamentally change
this situation, and might enable us to test whether our fixed
resource allocation model can account for search in the pres-
ence or more than one target. There is a sizable amount of evi-
dence that, even when the observer knows there may be more
than one target, detection of additional targets may suffer: a
phenomenon known as satisfaction of search (18). In an
eye-tracking study with radiologists searching chest radio-
graphs, Berbaum and colleagues (19) found that dwell time

Figure 5. Meandwell time for targets (a), distractors (b)andemptyspace (c) in bothexperiments.Dataarebrokendownasa functionofwhether
the region of interest was marked by the computer-aided detection (CAD) system, unmarked by the CAD system, or data from the no-CAD ob-
servers. Data on distractors and empty space are from target absent trials. Empty space regions were never marked by the CAD system.
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on native abnormalities was not affected by the presence of an
additional target that was added to radiographs. It would be
interesting to see if the additional coverage metrics discussed
in the current paper are also unaffected by the presence of
the additional target.
No CAD system is perfect, and observer studies may

provides the means necessary to improve CAD usage by
studying how to convey this imperfect information source
to users in the most efficient manner. Although the current
methodology of using artificial images and naive observers
requires additional work to determine whether these effects
generalize to medical practice, they are ideal for investigat-
ing the cause of these sorts of interesting and unexpected
results. We believe that na€ıve observer studies using
advanced experimental methods such as eye-tracking can
serve as a valuable first step in guiding future research in
medical imaging.
Our data point to two distinct causes of underperform-

ance in the presence of CAD. CAD appears to induce
observers to investigate the search area less thoroughly
than in the absence of CAD. In cases where the target is
hard to detect, such as experiment 1, this can lead to signif-
icantly decreased performance for any targets that the CAD
misses. Furthermore, we have demonstrated strong evi-
dence that observers sometimes fail to properly combine
information from the CAD system and the stimulus signal,
leading to no behavioral benefit of CAD. This failure of
data fusion suggests a reexamination of CAD display tech-
niques so that an expert observer can more readily combine
the two signals. Some recent work has suggested that CAD
may be more effective if the CAD marks convey more
information than a simple on or off signal and this may
be one way to address this concern (16).
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